
Package: optimall (via r-universe)
November 5, 2024

Type Package

Title Allocate Samples Among Strata

Version 1.1.1

Maintainer Jasper Yang <jbyang@uw.edu>

Description Functions for the design process of survey sampling, with
specific tools for multi-wave and multi-phase designs. Perform
optimum allocation using Neyman (1934) <doi:10.2307/2342192> or
Wright (2012) <doi:10.1080/00031305.2012.733679> allocation,
split strata based on quantiles or values of known variables,
randomly select samples from strata, allocate sampling waves
iteratively, and organize a complex survey design. Also
includes a Shiny application for observing the effects of
different strata splits.

License GPL-3

URL https://github.com/yangjasp/optimall,

https://yangjasp.github.io/optimall/

BugReports https://github.com/yangjasp/optimall/issues

Depends R (>= 3.5.0)

Imports dplyr (>= 1.0.5), glue (>= 1.4.0), magrittr (>= 2.0.0),
methods (>= 4.0.0), rlang (>= 0.2.2), stats (>= 4.0.2), tibble
(>= 1.4.2), utils (>= 3.5.0),

Suggests bslib (>= 0.2.4), DiagrammeR (>= 1.0.0), DT (>= 0.15),
datasets, globals (>= 0.12), knitr (>= 1.28), MASS (>= 7.1),
rmarkdown (>= 2.7), shiny (>= 1.6.0), shinytest (>= 1.4.0),
survey (>= 4.0), tidyr (>= 1.3), testthat (>= 3.0.2), webshot
(>= 0.5)

VignetteBuilder knitr

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

1

https://doi.org/10.2307/2342192
https://doi.org/10.1080/00031305.2012.733679
https://github.com/yangjasp/optimall
https://yangjasp.github.io/optimall/
https://github.com/yangjasp/optimall/issues

2 allocate_wave

RoxygenNote 7.3.1

Collate 'allocate_wave.R' 'sample_strata.R' 'wave.R' 'phase.R'
'multiwave.R' 'merge_samples.R' 'optimum_allocation.R'
'set_mw.R' 'get_mw.R' 'apply_multiwave.R' 'matwgt_sim.R'
'merge_strata.R' 'multiwave_diagram.R' 'optimall_shiny.R'
'split_strata.R' 'summary.multiwave.R'

Repository https://yangjasp.r-universe.dev

RemoteUrl https://github.com/yangjasp/optimall

RemoteRef HEAD

RemoteSha d19b63404be65f403f772e1e8d3965af56a2a7cf

Contents
allocate_wave . 2
apply_multiwave . 5
get_mw . 7
MatWgt_Sim . 8
merge_samples . 9
merge_strata . 10
multiwave . 11
Multiwave-class . 12
multiwave_diagram . 13
optimall_shiny . 13
optimum_allocation . 14
Phase-class . 16
sample_strata . 16
set_mw<- . 19
shiny_server . 20
shiny_ui . 20
split_strata . 21
summary,Multiwave-method . 23
Wave-class . 23

Index 24

allocate_wave Adaptive Multi-Wave Sampling

Description

Determines the adaptive optimum sampling allocation for a new sampling wave based on results
from previous waves. Using Neyman or Wright (2014) allocation, allocate_wave calculates the
optimum allocation for the total number of samples across waves, determines how many were
allocated to each strata in previous waves, and allocates the remaining samples to make up the
difference.

allocate_wave 3

Usage

allocate_wave(
data,
strata,
y,
already_sampled,
nsample,
allocation_method = c("WrightII", "WrightI", "Neyman"),
method = c("iterative", "simple"),
detailed = FALSE

)

Arguments

data A data frame or matrix with one row for each sampling unit, one column speci-
fying each unit’s stratum, one column holding the value of the continuous vari-
able for which the variance should be minimized, and one column containing a
binary indicator, already_sampled, specifying whether each unit has already
been sampled.

strata A character string or vector of character strings specifying the name of columns
that indicate the stratum that each unit belongs to.

y A character string specifying the name of the continuous variable for which the
variance should be minimized.

already_sampled

A character string specifying the name of a column that contains a binary (Y/N
or 1 /0) indicator specifying whether each unit has already been sampled in a
previous wave.

nsample The desired sample size of the next wave.
allocation_method

A character string specifying the method of optimum sample allocation to use.
For details see optimum_allocation(). Defaults to WrightII which is more
exact than Neyman but may run slower.

method A character string specifying the method to be used if at least one group was
oversampled. Must be one of:

• "iterative", the default, will require a longer runtime but may be a more
precise method of handling oversampled strata. If there are multiple over-
sampled strata, this method closes strata and re-calculates optimum alloca-
tion one by one.

• "simple" closes all oversampled together and re-calculates optimum allo-
cation on the rest of the strata only once. In certain cases where many strata
have been oversampled in prior waves, it is possible that this method will
output a negative value in n_to_sample. When this occurs, the function will
print a warning, and it is recommended that the user re-runs the allocation
with the ’iterative’ method.

detailed A logical value indicating whether the output dataframe should include details
about each stratum including the true optimum allocation without the constraint

4 allocate_wave

of previous waves of sampling and stratum standard deviations. Defaults to
FALSE, unless called within apply_multiwave(). These details are all avail-
able from optimum_allocation().

Details

If the optimum sample size in a stratum is smaller than the amount it was allocated in previous
waves, that strata has been oversampled. When oversampling occurs, allocate_wave "closes" the
oversampled strata and re-allocates the remaining samples optimally among the open strata. Under
these circumstances, the total sampling allocation is no longer optimal, but optimall will output
the most optimal allocation possible for the next wave.

Value

Returns a dataframe with one row for each stratum and columns specifying the stratum name
("strata"), population stratum size ("npop"), cumulative sample in that strata ("nsample_actual"),
prior number sampled in that strata ("nsample_prior"), and the optimally allocated number of
units in each strata for the next wave ("n_to_sample").

References

McIsaac MA, Cook RJ. Adaptive sampling in two-phase designs: a biomarker study for progression
in arthritis. Statistics in medicine. 2015 Sep 20;34(21):2899-912.

Reilly, M., & Pepe, M. S. (1995). A mean score method for missing and auxiliary covariate data in
regression models. Biometrika, 82(2), 299-314.

Wright, T. (2014). A Simple Method of Exact Optimal Sample Allocation under Stratification with
any Mixed Constraint Patterns, Research Report Series (Statistics #2014-07), Center for Statistical
Research and Methodology, U.S. Bureau of the Census, Washington, D.C.

Examples

Create dataframe with a column specifying strata, a variable of interest
and an indicator for whether each unit was already sampled
set.seed(234)
mydata <- data.frame(Strata = c(rep(1, times = 20),

rep(2, times = 20),
rep(3, times = 20)),

Var = c(rnorm(20, 1, 0.5),
rnorm(20, 1, 0.9),
rnorm(20, 1.5, 0.9)),

AlreadySampled = rep(c(rep(1, times = 5),
rep(0, times = 15)),

times = 3))

x <- allocate_wave(
data = mydata, strata = "Strata",
y = "Var", already_sampled = "AlreadySampled",
nsample = 20, method = "simple"

)

apply_multiwave 5

apply_multiwave Apply a basic optimall function to a Multiwave Object

Description

Given a specified phase and wave of an object of class multiwave, apply_multiwave applies one
of four optimall functions and returns an updated multiwave object with the output of the applied
function in its specified slot.

Usage

apply_multiwave(x, phase, wave, fun, ...)

S4 method for signature 'Multiwave'
apply_multiwave(x, phase, wave, fun, ...)

Arguments

x An Object of class "multiwave"

phase A numeric or character value specifying the phase of multiwave where the de-
sired output should be placed.

wave A numeric or character value specifying the wave of phase in multiwave where
the output should be placed.

fun A character value specifying the name of the optimall function to apply. The
four available functions are: optimum_allocation, allocate_wave, sample_strata,
and merge_samples.

• optimum_allocation: Uses the data from the previous wave (or previous
phase if wave = 1) to determine the optimum sampling allocation for the
specified wave. If used, the output multiwave object contains an updated
"design" slot in the specified wave.

• allocate_wave: Uses the data from the previous wave (or previous phase
if wave = 1) to determine the optimum sampling allocation for the spec-
ified wave. If used, the outputted multiwave object contains an updated
"design" slot in the specified wave. The default argument when allocate_wave
is applied in a apply_multiwave() is detailed = TRUE.

• sample_strata: Uses the data from the previous wave (or previous phase
if wave = 1) and design from current wave to generate a vector of ids to
sample for the current wave. Note that the wave argument of the standalone
sample_strata() function does not apply here, If used, the output multi-
wave object contains an updated "samples" slot in the specified wave.

• merge_samples: Uses the data from the previous wave (or previous phase
if wave = 1) and sampled_data from the specified wave to generate the
final, merged data for the current wave. If used, the output multiwave
object contains an updated "data" slot in the specified wave. Note that
merge_samples is already a method for multiwave objects, so calling it
through apply_multiwave is the exact same as calling it on its own.

6 apply_multiwave

See documentation of these functions for more details on the specific uses and
arguments.

... Optional arguments to be given to fun. Not necessary if the arguments are
already provided as named values in the wave, phase, or overall metadata in the
multiwave object. Arguments provided here will override specifications in the
metadata if provided in both places.

Value

The inputted multiwave object with one slot updated to include the output of the specified function.

Note that the phase and wave arguments specify where the function output should be placed.
apply_multiwave will determine where to get the input dataframes from (returning an error if
those slots are empty or invalid) given the specified wave for the output. For example, if phase
= 2, wave = 2, function = "allocate_wave", the data to determine the optimum allocation will
be taken from the previous wave (phase 2, wave 1) and the output multiwave object will have an
updated "design" slot of phase 2, wave 2.

Examples

library(datasets)

MySurvey <- multiwave(phases = 2, waves = c(1, 3))
set_mw(MySurvey, phase = 1, slot = "data") <-

dplyr::select(datasets::iris, -Sepal.Width)

Get Design by applying optimum_allocation
MySurvey <- apply_multiwave(MySurvey,

phase = 2, wave = 1,
fun = "optimum_allocation", strata = "Species",
y = "Sepal.Length",
nsample = 15,
method = "WrightII"

)

or, we can establish function args in the metadata
set_mw(MySurvey, phase = 2, slot = "metadata") <- list(

strata = "Species",
nsample = 15,
y = "Sepal.Length",
method = "WrightII"

)

which allows the function to be run without specifying the args
MySurvey <- apply_multiwave(MySurvey,

phase = 2, wave = 1,
fun = "optimum_allocation"

)

get_mw 7

get_mw Access Slots of a Multiwave Object

Description

get_mw is the accessor function for objects of class Multiwave. It is used to get values from multi-
wave (mw) objects.

Usage

get_mw(
x,
phase = 1,
wave = NA,
slot = c("data", "design", "metadata", "samples", "sampled_data")

)

get_data(
x,
phase = 1,
wave = NA,
slot = c("data", "design", "metadata", "samples", "sampled_data")

)

get_data(
x,
phase = 1,
wave = NA,
slot = c("data", "design", "metadata", "samples", "sampled_data")

) <- value

Arguments

x an object of class 'Multiwave'
phase a numeric value specifying the phase that should be accessed. To access the

overall metadata, set phase = NA. Defaults to 1.
wave a numeric value specifying the wave that should be accessed. Ta access phase

metadata, set wave = NA. Defaults to NA.
slot a character value specifying the name of the slot to be accessed. Must be one

of "metadata", "design", "samples", "sampled_data", "data". Defaults to
"data". See class documentation or package vignettes for more information
about slots.

value value to assign to specified slot

Value

If accessing a multiwave object slot, returns the specified slot.

8 MatWgt_Sim

Functions

• get_mw(): access slot of multiwave object

• get_data(): access slot of multiwave object

• get_data(x, phase = 1, wave = NA, slot = c("data", "design", "metadata", "samples",
"sampled_data")) <- value: assign value to slot of a multiwave object

Examples

Intiate multiwave object
MySurvey <- multiwave(phases = 2, waves = c(1, 3))

To access overall metadata
get_mw(MySurvey, phase = NA, slot = "metadata")

To write overall metadata
set_mw(MySurvey, phase = NA, slot = "metadata") <- list(

title = "Maternal Weight Survey"
)

To access Phase 2 metadata
get_mw(MySurvey, phase = 2, slot = "metadata")

To access Phase 2, Wave 2 design
get_mw(MySurvey, phase = 2, wave = 2, slot = "design")

MatWgt_Sim Example Dataset: Maternal Weights

Description

This SIMULATED dataset contains data on demographic characteristics and clinical data related
to childhood obesity for 10335 mother-child pairs. It is used to generate the workflow in the main
package vignette. It is based on a study that used multi-wave adaptive sampling to validate elec-
tronic health records that target factors related to childhood obesity (see https://www.pcori.org/research-
results/2017/developin-methods-estimate-and-address-errors-studies-using-electronic-health).

Format

MatWgt_Sim: a data frame with 10335 rows and 6 columns

id unique ID for each mother-child pair

mat_weight_true true (but unknown in phase 1) mother weight change during pregnancy

mat_weight_est estimated mother weight change during pregnancy based on error-prone phase-1
measurement

race specifies mother’s race

diabetes binary indicator for diabetes in the mother

obesity binary indicator for childhood obesity in child

merge_samples 9

Details

See package vignettes for more details.

merge_samples Merge Sampled Data based on IDs

Description

In an object of class "Mutiwave", merge_samples creates a dataframe in the "data" slot of the
specified wave by merging the dataframe in the "sampled data" slot with the dataframe in the
"data" slot of the previous wave.

Usage

merge_samples(
x,
phase,
wave,
id = NULL,
phase_sample_ind = "sampled_phase",
wave_sample_ind = "sampled_wave",
include_probs = NULL

)

Arguments

x an object of class "Multiwave".
phase A numeric value specifying the phase of the Multiwave object that the specified

wave is in. Cannot be phase 1.
wave A numeric value specifying the wave of the Multiwave object that the merge

should be performed in. This wave must have a valid dataframe in the "sampled
data" slot. The previous wave, taken as the final wave of the previous phase if
wave = 1, must have a valid dataframe in the "data" slot.

id A character value specifying the name of the column holding unit ids. Taken
from wave, phase, or overall metadata (searched for in that order) if NULL. De-
faults to NULL.

phase_sample_ind

a character value specifying the name of the column that should hold the indi-
cator of whether each unit has already been sampled in the current phase. The
specified phase number will be appended to the end of the given character name.
Defaults to "sampled_phase".

wave_sample_ind

a character value specifying the name of the column that should hold the indi-
cator of whether each unit has already been sampled in the current wave. The
specified phase and wave numbers separated by "." will be appended o the end
of the given character name. If FALSE, no such column is created. Defaults to
"sampled_wave".

10 merge_strata

include_probs A logical value. If TRUE, looks for "probs" in the design_data slot and in-
cludes the corresponding sampling probability for each element sampled in the
current wave in the merged data in a column named "sampling_prob". If this
column already exists, it keeps the existing column and adds (or replaces) the
values for units sampled in the current wave. Returns an error if specified but
wave_sample_wave is FALSE. Defaults to NULL, which looks for "probs" ar-
gument in metadata and does not create (or add to existing) "sampling_prob"
column if none is found.

Details

Columns in "sampled_data" that do not match names of the "data" from the previous wave will
be added as new columns in the output dataframe. All ids that do not appear in "sampled_data"
will receive NA values for these new variables.

If a column name in the "sampled_data" matches a column name in the "data" slot of the previous
wave, these columns will be merged into one column with the same name in the output dataframe.
For ids that have non-missing values in both columns of the merge, the value from "sampled_data"
will overwrite the previous value and a warning will be printed. All ids present in the "data" from
the previous wave but missing from "sampled_data" will be given NA values for the newly merged
variables.

If columns with the name produced by phase_sample_ind or wave_sample_ind already exist, they
will be overwritten.

Value

A Multiwave object with the merged dataframe in the "data" slot of the specified wave.

Examples

library(datasets)
iris <- data.frame(iris, id = 1:150)

MySurvey <- multiwave(phases = 2, waves = c(1, 3))
set_mw(MySurvey, phase = 1, slot = "data") <-

data.frame(dplyr::select(iris, -Sepal.Width))
set_mw(MySurvey, phase = 2, wave = 1, slot = "sampled_data") <-

dplyr::select(iris, id, Sepal.Width)[1:40,]
set_mw(MySurvey, phase = 2, wave = 1, slot = "samples") <-

list(ids = 1:40)
MySurvey <- merge_samples(MySurvey, phase = 2, wave = 1, id = "id")

merge_strata Merge Strata

Description

Merges multiple pre-defined sampling strata into a single stratum.

multiwave 11

Usage

merge_strata(data, strata, merge, name = NULL)

Arguments

data a dataframe or matrix with one row for each sampling unit, one column, strata,
specifying each unit’s current stratum, and any other relevant columns.

strata a character string specifying the name of the column that defines each unit’s
current strata.

merge the names of the strata to be merged, exactly as they appear in strata.

name a character name for the new stratum. Defaults to NULL, which pastes the old
strata names together to create the new stratum name.

Value

Returns the input dataframe with a new column named ’new_strata’ that holds the name of the
stratum that each sample belongs to after the merge. The column containing the previous strata
names is retained and given the name ’old_strata’.

Examples

x <- merge_strata(iris,
strata = "Species",
merge = c("virginica", "versicolor"), name = "v_species"

)

multiwave Initialize a Multiwave Object

Description

multiwave() Creates an Object of Class Multiwave with the specified number of phases and
waves. All contents will be NULL upon initialization, but the object contains a framework for
contents to be added to during the survey design and sample collection process. Currently, multi-
wave objects may only have one wave in Phase 1.

Usage

multiwave(phases, waves, metadata = list(), phase1 = data.frame())

new_multiwave(phases, waves, metadata = list(), phase1 = data.frame())

12 Multiwave-class

Arguments

phases A numeric value specifying the number of phases in the survey design.

waves A vector of numeric values specifying the number of waves in each phase of the
survey design. Length must match the number of phases and the first

metadata A list containing the survey metadata. Defaults to an empty list.

phase1 A dataframe containing the phase 1 data of the survey. Defaults to an empty
dataframe.

Value

Returns an object of class Multiwave that stores all relevant data from the survey design in an
organized and easy-to-access manner. See package vignettes or class documentation for more in-
formation.

Examples

Initialize a multiwave object for a two-phase sampling design that will
sample over three waves in the second phase
multiwave_object <- multiwave(phases = 2, waves = c(1, 3))

If we already have the phase 1 data and want to add a title to the survey
metadata, we can initialize the object with these included.

library(datasets)
multiwave_object <- multiwave(

phases = 2, waves = c(1, 3),
metadata = list(title = "my two-phase survey"), phase1 = iris

)

Multiwave-class Multiwave Class for Multi-Wave Sampling Organization

Description

optimall defines three S4 classes for organizing the multi-wave sampling workflow: Wave, Phase,
and Multiwave. An object of class Multiwave holds metadata and a list of objects of class Phase,
which in turn holds metadata and a list of objects of class Wave. These three object classes are used
together to organize the workflow of multi-wave sampling designs.

Slots

metadata A list of elements that describe the entire survey. The list is empty upon initialization
of the multiwave object, but the user may add anything to it as they see fit. It may include a
"title".

phases A list of objects of class Phase (see other class documentation).

multiwave_diagram 13

multiwave_diagram Print Summary Diagram of Multiwave Object

Description

Takes a multiwave object as input and plots a diagram of its structure in the plotting window using
grViz() from the DiagrammeR package. Red boxes indicate slots that have not yet been filled, blue
boxes indicate that the slot is filled.

Usage

multiwave_diagram(x, height = NULL, width = NULL)

Arguments

x An object of class multiwave.

height The height in pixels of the diagram. Defaults to NULL , which produces default
height.

width The width in pixels of the diagram. Defaults to NULL, which produces the default
width.

Value

Returns an object of class htmlwidget displaying the structure of the x.

Examples

MySurvey <- multiwave(phases = 2, waves = c(1, 3))
multiwave_diagram(MySurvey)

optimall_shiny Run the shiny application

Description

Launches an R Shiny application locally. This app can be used to interactively split strata and
determine how the results affect optimum allocation of a fixed number of samples. It accepts .csv
and .rds files as well as .rda files that contain a single dataset. See vignette titled "Splitting Strata
with Optimall Shiny" for more information.

Usage

optimall_shiny(...)

14 optimum_allocation

Arguments

... Optional arguments to pass to shiny::runApp. display.mode is already set to
normal.

Value

Launches an R Shiny application locally.

optimum_allocation Optimum Allocation

Description

Determines the optimum sampling fraction and sample size for each stratum in a stratified random
sample, which minimizes the variance of the sample mean according to Neyman Allocation or Exact
Optimum Sample Allocation (Wright 2014).

Usage

optimum_allocation(
data,
strata,
y = NULL,
sd_h = NULL,
N_h = NULL,
nsample = NULL,
ndigits = 2,
method = c("WrightII", "WrightI", "Neyman"),
allow.na = FALSE

)

Arguments

data A data frame or matrix with at least one column specifying each unit’s stratum,
and either 1) a second column holding the value of the continuous variable for
which the sample mean variance should be minimized (y) or 2) two columns:
one holding the the within-stratum standard deviation for the variable of interest
(sd_h) and another holding the stratum sample sizes (N_h). If data contains
a column y holding values for the variable of interest, then data should have
one row for each sampled unit. If data holds sd_h and N_h, the within-stratum
standard deviations and population sizes, then data should have one row per
stratum. Other columns are allowed but will be ignored.

strata a character string or vector of character strings specifying the name(s) of columns
which specify the stratum that each unit belongs to. If multiple column names
are provided, each unique combination of values in these columns is taken to
define one stratum.

optimum_allocation 15

y a character string specifying the name of the continuous variable for which the
variance should be minimized. Defaults to NULL and should be left as NULL when
data holds stratum standard deviations and sample sizes instead of individual
sampling units.

sd_h a character string specifying the name of the column holding the within-stratum
standard deviations for each stratum. Defaults to NULL and should be left as
NULL when data holds individual sampling units.

N_h a character string specifying the name of the column holding the population
stratum sizes for each stratum. Defaults to NULL and should be left as NULL
when data holds individual sampling units.

nsample the desired total sample size. Defaults to NULL.

ndigits a numeric value specifying the number of digits to which the standard deviation
and stratum fraction should be rounded. Defaults to 2.

method a character string specifying the method of optimum sample allocation to use.
Must be one of:

• "WrightII", the default, uses Algorithm II from Wright (2014) to deter-
mine the optimum allocation of a fixed sample size across the strata. It
requires that at least two samples are allocated to each stratum.

• "WrightI" uses Wright’s Algorithm I to determine the optimum sample
allocation. It only requires that at least one sample is allocated to each
stratum, and can therefore lead to a biased variance estimate.

• "Neyman" uses the standard method of Neyman Allocation to determine the
optimum sample allocation. When nsample = NULL, the optimal sampling
fraction is calculated and returned. When a numeric value is specified for
nsample, then the number allocated to each stratum is the optimal sampling
fraction times nsample rounded to the nearest integer, which may no longer
be optimall.

allow.na logical input specifying whether y should be allowed to have NA values. De-
faults to FALSE.

Value

Returns a data frame with the number of samples allocated to each stratum, or just the sampling
fractions if nsample is NULL.

References

Wright, T. (2014). A Simple Method of Exact Optimal Sample Allocation under Stratification with
any Mixed Constraint Patterns, Research Report Series (Statistics #2014-07), Center for Statistical
Research and Methodology, U.S. Bureau of the Census, Washington, D.C.

Examples

optimum_allocation(
data = iris, strata = "Species", y = "Sepal.Length",
nsample = 40, method = "WrightII"

)

16 sample_strata

Or if input data is summary of strata sd and N:
iris_summary <- data.frame(

strata = unique(iris$Species),
size = c(50, 50, 50),
sd = c(0.3791, 0.3138, 0.3225)

)

optimum_allocation(
data = iris_summary, strata = "strata",
sd_h = "sd", N_h = "size",
nsample = 40, method = "WrightII"

)

Phase-class Phase Class for Multi-Wave Sampling Organization

Description

optimall defines three S4 classes for organizing the multi-wave sampling workflow: Wave, Phase,
and Multiwave. An object of class Multiwave holds metadata and a list of objects of class Phase,
which in turn holds metadata and a list of objects of class Wave. These three object classes are used
together to organize the workflow of multi-wave sampling designs.

Slots

metadata A list containing the phase metadata

waves A list of objects of class Wave, each element representing one wave of the phase

sample_strata Select Sampling Units based on Stratified Random Sampling

Description

Requires two dataframes or matrices: data with a column strata which specifies stratum mem-
bership for each unit in the population and a second dataframe design_data with one row per
strata level with a column design_strata that indicates the unique levels of strata in data and
n_allocated that specifies the number to be sampled from each stratum. sample_strata selects
the units to sample by selecting a random sample of the desired size within each stratum. The
second dataframe can be the output of allocate_wave() or optimum_allocation().

sample_strata 17

Usage

sample_strata(
data,
strata,
id,
already_sampled = NULL,
design_data,
design_strata = "strata",
n_allocated = "n_to_sample",
probs = NULL,
wave = NULL,
warn_prob_overwrite = TRUE

)

Arguments

data A data frame or matrix with one row for each sampling unit in the population,
one column specifying each unit’s stratum, and one column with a unique iden-
tifier for each unit.

strata a character string specifying the name of column in data which indicates stra-
tum membership.

id a character string specifying the name of the column in data that uniquely iden-
tifies each unit.

already_sampled

a character sting specifying the name of the column in data which indicates (1/0
or Y/N) whether a unit has already been sampled in a prior wave. Defaults to
NULL which means that none have been sampled yet.

design_data a dataframe or matrix with one row for each stratum that subdivides the popu-
lation, one column specifying the stratum name, and one column indicating the
number of samples allocated to each stratum.

design_strata a character string specifying the name of the column in design_data that con-
tains the stratum levels. Defaults to "strata".

n_allocated a character string specifying the name of the column in design_data that indi-
cates the n allocated to each stratum. Defaults to "n_to_sample".

probs a character string specifying the name of the column in in design_data that
indicates the sampling probability for each stratum, or a formula indicating how
the sampling probabilities can be computed. From existing columns. If spec-
ified, a new column containing the sampling probability attached to each sam-
pled unit will be created in the outputted dataframe. This column will be named
"sampling_prob". Defaults to NULL.

wave A numeric value or character string indicating the sampling wave. If specified,
the input is appended to "sample_indicator" in the new the sample indicator
column name (as long as such columns name do not already exist in data).
Defaults to NULL. This argument does not apply when sample_strata() is
called inside allocate_wave().

18 sample_strata

warn_prob_overwrite

Logical indicator for whether warning should be printed if probs is specified
and a "sampling_prob" columns is going to be overwritten. Defaults to TRUE.
If function is called inside apply_multiwave(), then defaults to FALSE

Value

returns data as a dataframe with a new column named "sample_indicator" containing a binary (1/0)
indicator of whether each unit should be sampled. If wave argument is specified, then the given input
is appended to the name "sample_indicator". If probs argument is specified, then the dataframe
will also contain a new column named "sampling_prob" holding the sampling probabilities for each
sampled element.

Examples

Define a design dataframe
design <- data.frame(

strata = c("setosa", "virginica", "versicolor"),
npop = c(50, 50, 50),
n_to_sample = c(5, 5, 5)

)

Make sure there is an id column
iris$id <- 1:nrow(iris)

Run
sample_strata(

data = iris, strata = "Species", id = "id",
design_data = design, design_strata = "strata",
n_allocated = "n_to_sample"

)

To include probs as a formula
sample_strata(

data = iris, strata = "Species", id = "id",
design_data = design, design_strata = "strata",
n_allocated = "n_to_sample", probs = ~n_to_sample/npop

)

If some units had already been sampled
iris$already_sampled <- rbinom(nrow(iris), 1, 0.25)

sample_strata(
data = iris, strata = "Species", id = "id",
already_sampled = "already_sampled",
design_data = design, design_strata = "strata",
n_allocated = "n_to_sample"

)

set_mw<- 19

set_mw<- Write Slots of a Multiwave Object

Description

set_mw is used to assign values (write to) slots of Multiwave class objects. It is used to set values
of multiwave (mw) objects.

Usage

set_mw(
x,
phase = 1,
wave = NA,
slot = c("data", "design", "metadata", "samples", "sampled_data")

) <- value

Arguments

x an object of class 'Multiwave'

phase a numeric value specifying the phase that should be accessed. To access the
overall metadata, set phase = NA. Defaults to 1.

wave a numeric value specifying the wave that should be accessed. Ta access phase
metadata, set wave = NA. Defaults to NA.

slot a character value specifying the name of the slot to be accessed. Must be one
of "metadata", "design", "samples", "sampled_data", "data". Defaults to
"data". See class documentation or package vignettes for more information
about slots.

value value to assign to specified slot

Examples

Intiate multiwave object
MySurvey <- multiwave(phases = 2, waves = c(1, 3))

To write overall metadata
set_mw(MySurvey, phase = NA, slot = "metadata") <-
list(title = "Maternal Weight Survey")

To write Phase 2 metadata
set_mw(MySurvey, phase = 2, slot = "metadata") <-
list(strata = "mystrata", id = "id")

20 shiny_ui

shiny_server Server logic for Interactive Shiny for Optimall.

Description

Server logic for Interactive Shiny for Optimall.

Usage

shiny_server(input, output, session)

Arguments

input input for Shiny server.

output output for by Shiny server.

session session for Shiny server.

Value

Defines server logic for Shiny app that can be loaded with optimall_shiny().

shiny_ui UI for Shiny App for Splitting Strata with Optimum Allocation

Description

UI for Shiny App for Splitting Strata with Optimum Allocation

Usage

shiny_ui()

Value

Creates the UI for the Shiny app that is loaded with optimall_shiny.

split_strata 21

split_strata Split Strata

Description

Splits pre-defined sampling strata based on values of a continuous or categorical variable.

Usage

split_strata(
data,
strata,
split = NULL,
split_var,
type = "global quantile",
split_at = 0.5,
trunc = NULL

)

Arguments

data a dataframe or matrix with one row for each sampling unit, one column speci-
fying each unit’s current stratum, one column containing the continuous or cat-
egorical values that will define the split, and any other relevant columns.

strata a character string specifying the name of the column that defines each unit’s
current strata.

split the name of the stratum or strata to be split, exactly as they appear in strata.
Defaults to NULL, which indicates that all strata in strata will be split.

split_var a character string specifying the name of the column that should be used to
define the strata splits.

type a character string specifying how the function should interpret the split_at
argument. Must be one of:

• "global quantile", the default, splits the strata at the quantiles specified
in split_at defined along the entire, unfiltered split_var column.

• "local quantile" splits the strata at the quantiles specified in split_at
defined along the filtered split_var column which only includes units in
the stratum being split.

• "value" splits the strata at the values specified in split_at along split_var
column.

• "categorical" splits the strata into two new strata, one that contains each
unit where split_var matches an input of split_at, and a second that
contains every other unit.

split_at the percentile, value, or name(s) which split_var should be split at. The inter-
pretation of this input depends on type. For "quantile" types, input must be
between 0 and 1. Defaults to 0.5 (median). For "categorical" type, the input
should be a vector of values or names in split_var that define the new stratum.

22 split_strata

trunc A numeric or character value specifying how the name of the split_var should
be truncated when naming the new strata. If numeric, the new strata name will
only include the first ’n’ characters of the split_var name. If character, the
specified string will be used to name the new strata instead of the split_var
name. Defaults to NULL, which creates the new strata name using the entire
name of the split_var column.

Details

For splits on continuous variables, the new strata are defined on left-open intervals. The only ex-
ception is the first interval, which must include the overall minimum value. The names of the newly
created strata for a split generated from a continuous value are the split_var column name with
the range of values defining that stratum appended to the old strata name. For a categorical split,
the new strata names are the split_var column name appended to the 1/0 logical flag specifying
whether the unit is in split at, all appended to the old strata name. If the split_var column
name is long, the user can specify a value for trunc to prevent the new strata names from being
inconveniently long.

Value

Returns the input dataframe with a new column named ’new_strata’ that holds the name of the
stratum that each sample belongs to after the split. The column containing the previous strata
names is retained and given the name "old_strata".

Examples

x <- split_strata(iris, "Sepal.Length",
strata = c("Species"),
split = "setosa", split_var = "Sepal.Width",
split_at = c(0.5), type = "global quantile"

)

You can split at more than one quantile in one call.
The above call splits the "setosa" stratum into three of equal size
x <- split_strata(iris, "Sepal.Length",

strata = c("Species"),
split = "setosa", split_var = "Sepal.Width", split_at = c(0.33, 0.66),
type = "local quantile"

)

Manually select split values with type = "value"
x <- split_strata(iris, "Sepal.Length",

strata = "Species",
split = "setosa", split_var = "Sepal.Width",
split_at = c(3.1, 3.8), type = "value"

)

Perform a categorical split.
iris$strata <- rep(c(rep(1, times = 25), rep(0, times = 25)), times = 3)
x <- split_strata(iris, "Sepal.Length",

strata = "strata",

summary,Multiwave-method 23

split = NULL, split_var = "Species",
split_at = c("virginica", "versicolor"), type = "categorical"

)
Splits each initial strata 1 and 2 into one stratum with "virginia"
and "versicolor" species and one stratum with all of the other species
not specified in the split_at argument.

summary,Multiwave-method

Method for summary for class Multiwave

Description

Method for summary for class Multiwave

Usage

S4 method for signature 'Multiwave'
summary(object)

Arguments

object object of class "Multiwave"

Value

Prints a summary of the specified multiwave object in the console.

Wave-class Wave Class for Multi-Wave Sampling Organization

Description

optimall defines three S4 classes for organizing the multi-wave sampling workflow: Wave, Phase,
and Multiwave. An object of class Multiwave holds metadata and a list of objects of class Phase,
which in turn holds metadata and a list of objects of class Wave. These three object classes are used
together to organize the workflow of multi-wave sampling designs.

Slots

metadata A list containing the metadata for the wave.

design a dataframe specifying the design of the wave. Is often the output of allocate_wave.

samples A character vector containing the ids of the units sampled in the wave.

sampled_data A dataframe holding the data, with ids, collected in this wave of sampling

data A dataframe holding the updated full data set with all of the Phase 1 sampling units including
the samples collected in this wave.

Index

allocate_wave, 2
apply_multiwave, 5
apply_multiwave,Multiwave-method

(apply_multiwave), 5

get_data (get_mw), 7
get_data,Multiwave-method (get_mw), 7
get_data<- (get_mw), 7
get_data<-,Multiwave-method (get_mw), 7
get_mw, 7
get_mw,Multiwave-method (get_mw), 7

MatWgt_Sim, 8
merge_samples, 9
merge_samples,Multiwave-method

(merge_samples), 9
merge_strata, 10
Multiwave (Multiwave-class), 12
multiwave, 11
Multiwave-class, 12
multiwave_diagram, 13

new_multiwave (multiwave), 11

optimall_shiny, 13
optimum_allocation, 14

Phase (Phase-class), 16
Phase-class, 16

sample_strata, 16
set_mw<-, 19
set_mw<-,Multiwave-method (set_mw<-), 19
shiny_server, 20
shiny_ui, 20
split_strata, 21
summary,Multiwave-method, 23

Wave (Wave-class), 23
Wave-class, 23

24

	allocate_wave
	apply_multiwave
	get_mw
	MatWgt_Sim
	merge_samples
	merge_strata
	multiwave
	Multiwave-class
	multiwave_diagram
	optimall_shiny
	optimum_allocation
	Phase-class
	sample_strata
	set_mw<-
	shiny_server
	shiny_ui
	split_strata
	summary,Multiwave-method
	Wave-class
	Index

